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Abstract
Android malware continues to evolve, posing significant challenges
in generalization, fine-grained detection, and interpretability for
existing detection systems. Existing methods struggle to generalize
to unseen malware, lack fine-grained behavioral understanding,
and provide limited interpretability due to their reliance on rigid
rules or the inability to recover complete causal behavior paths.
To this end, we present ForeDroid, a unified and interpretable
framework for Android malware detection and explanation via
scenario-aware analysis. ForeDroid models malicious intent as
behavioral inconsistencies within functional scenarios. It clusters
semantically coherent scenarios, extracts sensitive API call chains,
and summarizes them into natural language using LLMs. These
summaries are embedded and compared against benign behavior
distributions within the same scenario for unsupervised anomaly
detection. High-risk behaviors showing strong semantic inconsis-
tency are further interpreted by an LLM-driven module that gen-
erates fine-grained anomaly reports. We evaluated ForeDroid on
two challenging tasks: zero-day malware detection and fine-grained
behavior analysis. The result shows ForeDroid outperforms Ma-
MaDroid, MalScan, DeepRefiner, and a continuous learning-based
approach in zero-day malware detection under the temporal-split
setting. Besides, ForeDroid achieves an F1-score of 0.94 in fine-
grained behavior detection on the manually annotated GPMalware
dataset, surpassing ProMal. Our results demonstrate ForeDroid’s
ability to bridge low-level call graph analysis with high-level se-
mantic reasoning, making it a practical, interpretable solution for
malware detection.

∗Sen Chen and Jiaming Li are co-first authors and contributed equally to this work.
†Sen Chen is the corresponding author of this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, Taipei
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765207

CCS Concepts
• Security and privacy→ Software security engineering.

Keywords
Android Security; Context-Aware Analysis; Scenario Modeling;
Explainable Malware Detection

ACM Reference Format:
Jiaming Li, Sen Chen, Chunlian Wu, Yuxin Zhang, and Lingling Fan. 2025.
ForeDroid: Scenario-Aware Analysis for Android Malware Detection and
Explanation. In Proceedings of the 2025 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’25), October 13–17, 2025, Taipei. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765207

1 Introduction
Android malware, specifically crafted to compromise Android de-
vices, has long posed a serious security threat to millions of users
worldwide. Given the dominant position of the Android operat-
ing system in the mobile ecosystem, the research community has
made sustained efforts to enhance malware detection capabili-
ties [2, 3, 6, 7, 15, 17, 18, 32, 38–40, 44, 45]. Early approaches mainly
relied on syntactic static features, such as frequency of sensitive
API usage [2, 7, 9, 12], or permission requests [6]. While effec-
tive to a degree, these methods are vulnerable to code obfuscation
and lack semantic understanding. To overcome these limitations,
recent research has shifted toward behavior semantics modeling,
including context-aware analysis [3, 44] and graph-based represen-
tations [25, 40, 45], aiming to capture richer execution semantics
and behavioral context. However, they still face three key limita-
tions: (1) many rely on handcrafted rules or rigid pattern matching,
which hampers scalability and introduces noise; (2) they often over-
fit to specific training distributions, limiting robustness against
novel or zero-day malware; and (3) most operate at the coarse app
level, lacking the granularity to detect and explain malicious be-
havior at the function or call-chain level. Meanwhile, explainability
techniques have been explored to improve malware detection trans-
parency. Explainable artificial intelligence (XAI) methods such as
Drebin [7], LIME [34], LEMNA [21], and XMal [38] highlight in-
fluential features used in decisions. ProMal [39] further constructs
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a behavior knowledge graph (BxKG) to capture malicious execu-
tion trajectories. However, XAI methods cannot recover full causal
paths, while graph-based approaches require extensive manual
annotation, hindering adaptability and scalability in real-world set-
tings. These issues underscore the need for a more generalizable,
fine-grained, and interpretable behavior modeling framework.

To this end, we propose ForeDroid, a scenario-aware behavior
analysis framework for automated, fine-grained, and interpretable
Android malware detection. The name ForeDroid reflects its dual
goals: proactive foresight and interpretable forensics in Android
malware analysis. Our design is inspired by the observation that
benign and malicious applications (apps) follow fundamentally
different design philosophies-where benign apps implement func-
tionalities aligned with user expectations, while malicious apps
often violate scenario expectations to perform covert or harmful
operations. For example, sending an SMS is expected during explicit
user interaction in a messaging scenario, but doing so silently in a
background update context violates this expectation and suggests
malicious intent. Therefore, we define such behavioral inconsisten-
cies within functional scenarios as a core signal of malicious intent.
ForeDroid aims to automatically detect and explain such inconsis-
tencies without relying on labeled malware samples. Despite the
motivation, building such a system involves several technical chal-
lenges: C1: Scenario Modeling. Android apps are often composed of
multiple functionalities, each associated with distinct entry points
triggered by various UI interactions (e.g., button clicks, text input)
or system events (e.g., broadcasts, lifecycle callbacks). Accurately
partitioning these diverse and implicit entry points into semanti-
cally coherent functional scenarios is difficult due to the absence
of a centralized “main” entry point and the diversity of application
designs. C2: Sensitive Behavior Representation. Sensitive behaviors
often span asynchronous invocations and inter-component com-
munication (ICC), making them hard to be fully captured using
traditional static tools like FlowDroid [8]. Additionally, diverse
coding styles, obfuscation, and inconsistent naming conventions
further complicate the extraction of robust semantic representa-
tions. C3: Fine-Grained Detection. Effectively identifying malicious
behaviors at the level of API call chains, instead of relying on coarse-
grained app-level classification, poses significant challenges. Such
fine-grained detection requires robust semantic modeling and large-
scale labeled data, which are often difficult to obtain in practice.
Moreover, malicious behaviors frequently evolve and manifest in
novel ways, making it difficult for supervised methods to gener-
alize, especially in zero-day scenarios. C4: Behavior Explanation
Challenge. Automatically explaining suspicious behaviors requires
bridging the semantic gap between low-level execution codes and
high-level behavioral intent. This involves identifying anomalous
behaviors, interpreting their context, and reasoning about malicious
intent—tasks that typically demand substantial expert knowledge.
Generating accurate and sound explanations in a fully automated
and scalable manner remains a challenge.

To address these challenges, ForeDroid integrates key compo-
nents into a unified, interpretable detection pipeline, guided by
the following insights: To tackle C1 , ForeDroid clusters GUI- and
system-triggered entry points based on semantic contexts (e.g., GUI
text, intent actions), enabling scenario-aware partitioning of behav-
iors. For C2, ForeDroid reconstructs complete paths from entry

points to sensitive APIs and abstracts them into intent-expressive
summaries via LLMs, ensuring robustness against obfuscation, nam-
ing inconsistency, and code variability. To handle C3, ForeDroid
learns scenario-specific benign behavior distributions and detects
anomalies via unsupervised similarity scoring and One-Class SVM
classification, supporting label-free, zero-day detection. To address
C4, ForeDroid employs LLM-based reasoning over scenario con-
text and call chains to generate structured analyst-style explana-
tions for behaviors with high anomaly scores. Based on these in-
sights, ForeDroid combines functional scenariomodeling, sensitive
behavior representation, and large-scale benign behavior distribu-
tions to enable unsupervised detection and explanation. It detects
abnormal behaviors by comparing semantic behavior representa-
tions against benign patterns, without relying on labeled malware.
While malicious apps may exhibit unseen behaviors, our approach
generalizes well by grounding analysis in functional intent and
behavioral consistency. By leveraging LLMs for both behavior rep-
resentation and explanation, ForeDroid enhances fine-grained de-
tection and enables interpretable analysis for decision-making.

We evaluate ForeDroid with a focus on its capability to detect
zero-day Android malware. Under both temporal (i.e., training on
older samples and testing on newer ones) and family-based (i.e.,
training on known malware families and testing on previously un-
seen ones) split settings, ForeDroid achieves an F1-score of 0.886
(temporal) and 0.893 (family-based). ForeDroid surpasses state-of-
the-art baselines, including MaMaDroid [25] (F1-score: 0.453 tempo-
ral, 0.198 family-based), MalScan [40] (0.399 temporal, 0.273 family-
based), DeepRefiner [42] (0.445 temporal, 0.337 family-based), and
the continuous learning–based approach [13] (0.735 temporal). In
terms of F1-score under the temporal-split setting, ForeDroid de-
livers improvements of up to 95.6%, 122.1%, 99.1%, and 20.5% over
these methods, respectively. These results highlight ForeDroid ’s
strong generalization to previously unseen malware. Moreover,
ForeDroid demonstrates strong performance in fine-grained be-
havior detection. On 102 manually labeled samples, it correctly
detects 652 malicious behavior instances with an F1-score of 0.94,
exceeding the performance of ProMal (634 behaviors, F1-score:
0.93). Unlike prior systems, ForeDroid achieves this through a
fully automated pipeline without requiring manual rule construc-
tion or annotations. We also conduct an ablation study to assess
the contribution of each core component of ForeDroid.

In summary, the paper makes the following major contributions:

• We present ForeDroid, a unified and automated framework
for Android malware detection and explanation, built on the
insight that behavioral inconsistencies within functional sce-
narios strongly indicate malicious intent.

• We construct a large-scale, representative corpus of scenario-
behavior aligned reference library, enabling robust modeling of
legitimate behavior across diverse functional scenarios.

• We conduct extensive evaluations on 41,665 Android apps,
where ForeDroid achieves high zero-day detection accuracy
under both temporal and family-based splits. Additionally, we
further assess its fine-grained detection capability by decompos-
ing coarse-grained malicious payloads into 25 detailed behavior
types, achieving superior accuracy and interpretability com-
pared to state-of-the-art baselines.
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Update
update applied succe-
ssfully.

OK

GUI Strings from String.xml
<resources>

<string name=“update_success”>Update applied successfully.</string>
<string name="button_ok">OK</string>

…
</resources>

Layout (res/layout/dialog_update.xml)

<LinearLayout
android:id="@+id/alert_dialog_update"
...
<TextView

android:text="@string/update_success" />
...

<Button
android:id="@+id/button_ok"
android:text="@string/button_ok" />
...

</LinearLayout>

Code segments triggered in the the “Update” Scenario 
public Dialog showUpdateDialog(final Context context) {

final Dialog dialog = new Dialog(context);
dialog.setContentView(R.layout.dialog_update);  // pop-up dialog box

    Button okButton = dialog.findViewById(R.id.button_ok);
// find the element through ID
okButton.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View view) {

              context.getPackageManager().setComponentEnabledSetting(
new ComponentName(context, MainActivity.class),

PackageManager.COMPONENT_ENABLED_STATE_DISABLED,
PackageManager.DONT_KILL_APP

);
dialog.dismiss(); }

});
return dialog;}

Context Label
Text Label

UI Event Callback

Update successfully

Hide the app icon

Inconsistent !  

App 
Update

X

Figure 1: An example of behavioral inconsistency within the functional scenario about app update.

• We release ForeDroid on GitHub [29], along with the behavior-
level detection results and auto-generated forensic reports for
GPMalware samples, to support reproducibility and future re-
search in interpretable Android malware analysis.

2 Background
2.1 Sensitive API
A sensitive API in the Android environment refers to any appli-
cation programming interface (API) that accesses critical system
resources or user data, such as device identifiers, location, cam-
era, or system settings. These APIs may pose privacy or security
risks [7, 16], necessitating special attention in analyzing app be-
haviors for malicious intent. In this work, we adopt the sensitive
API set defined by MalScan [40], which covers APIs related to
personal data access, communication, system control, and other
security-critical operations. Specifically, we filter and retain only
the security-relevant call chains and functional scenarios for down-
stream analysis based on the reachability of sensitive APIs from
entry points. By removing benign-only or irrelevant logic, our anal-
ysis can focus on the execution paths that are critical to security.

2.2 Behavior Triggering Mechanisms
Android apps follow a component-based, event-driven architecture,
where execution logic is driven by various user- or system-triggered
events. Specifically, app behaviors implemented by API calls are
typically initiated via two major types of triggering mechanisms:

• GUI Interaction Triggers: Behaviors explicitly triggered by
user interaction with the graphical user interface (GUI), imple-
mented through GUI-associated callbacks, such as onClick(),
onItemSelected(), and other UI-bound handlers. Such call-
backs are usually registered via XML layout attributes (e.g.,
android:onClick) or programmatically using event listener
interfaces (e.g., setOnClickListener()).

• Background Callback Triggers: Behaviors implicitly trig-
gered by the Android system in response to environmental
changes, such as incoming SMS messages, boot completion, or

component lifecycle transitions. These are handled by back-
ground callbacks like onReceive() in BroadcastReceiver,
onStartCommand() in Service, or onCreate() in Activity.

This categorization of behavior triggers reflects a fundamental
design pattern in Android, forming the foundation for our func-
tional scenario modeling (Section 3.2). By distinguishing behaviors
based on their triggeringmechanism, we canmore accuratelymodel
their execution context and identify potential malicious intent. To
support behavior analysis, we take GUI-associated callbacks and
background-triggered callbacks introduced above as entry points,
which serve as the starting nodes for subsequent functional sce-
nario modeling and the call chain extraction of sensitive behavior
representation in our approach.

2.3 Motivating Example
As highlighted in the introduction, benign apps typically behave
as expected, whereas malicious ones violate functional intent for
covert or harmful purposes. Figure 1 illustrates an instance of such
behavioral inconsistency within a specific functional scenario. The
scenario shows a situation where the app has been updated success-
fully, as indicated by the confirmation message (“Update applied
successfully”), fromwhich we can infer that the scenario is about an
app update-information that is also conveyed to the user through
GUI. However, clicking the “OK” button in this context triggers
the invocation of setComponentEnabledSetting(), resulting in
an unexpected behavior, i.e., hiding the app icon from the device’s
home screen. Hiding the icon is a common stealth strategy used
by malware to evade user detection and hinder uninstallation or
further inspection. The discrepancy between the expected behavior
(“Update successfully”) and the unexpected behavior (“Hide the app
icon”) that is silently triggered reveals a semantic mismatch within
the current scenario. By identifying such mismatches, we can un-
cover potential anomalous or malicious behaviors that deviate from
the app’s intended function.

3 Approach
To address the limitations of existing methods in generalization,
fine-grained behavior detection, and interpretability, we propose
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Figure 2: Overview of ForeDroid.

ForeDroid, a fully automated and interpretable system for analyz-
ing malicious behaviors in Android apps. ForeDroid takes a single
unknown APK file as input and outputs both a malware detection
result and a structured malware report for the explanation of abnor-
mal behaviors. Internally, it relies on a pre-constructed scenario-
behavior aligned reference library built using benign APKs, which
enables unsupervised and scenario-aware anomaly detection with-
out requiring any labeled malware samples. As illustrated in Fig-
ure 2, ForeDroid consists of four main stages.

(1) Collection of Representative Benign APKs, which collects
high-quality benign APKs fromGoogle Play based on download
volume and category balance, serves as a foundation for build-
ing a scenario-aligned reference library of benign behaviors
for subsequent modeling and detection.

(2) Functional Scenario Modeling, which partitions app behav-
iors into semantically coherent scenarios based on the semantic
signals of their triggering entry points, captures scenario labels
that reflect the functional intent behind both GUI-triggered and
background-triggered behaviors of apps.

(3) Sensitive Behavior Representation, which abstracts sensi-
tive API call chains into semantically meaningful summaries us-
ing LLM, enables representation generation of scenario-specific
behaviors by preserving execution context while reducing re-
liance on low-level implementation details.

(4) Fine-Grained Anomaly Detection and Explanation,which
detects semantically deviant behaviors within specific func-
tional scenarios and generates structured LLM-based reports,
enabling accurate and explainable detection of malicious be-
haviors without relying on labeled training data.

This modular design enables our system to go beyond traditional
permission- or API-level detection by modeling behaviors in sce-
nario context, ensuring fine-grained accuracy and interpretable
outputs for real-world malware analysis.

3.1 Collection of Representative Benign APKs
We collected benign APKs from the Google Play Store via the An-
droZoo platform, focusing on apps published between 2015 and
2025. Google Play was chosen as the data source because it covers
49 functional categories (e.g., social, tools, games) and requires apps
to pass security audits. To ensure dataset comprehensiveness and
representativeness, we applied the following criteria: (1) Download
Volume Priority: Only APKs with ≥ 5,000 downloads were selected
to ensure active usage and diverse scenarios. (2) Balanced Category
Coverage: We selected the top 600 APKs from each of the 49 cate-
gories, with all available apps from underrepresented categories
like COMICS and EVENTS. After removing duplicates, filtering in-
valid APKs, and excluding 202 apps with incorrect category labels,
we obtained 28,994 high-quality benign apps. This dataset forms
the basis of a scenario-behavior aligned reference library, which is
further constructed through the functional scenario modeling and
sensitive behavior representation processes in subsequent stages.

3.2 Functional Scenario Modeling
To detect behavioral inconsistencies, we first need to understand
the intended functional purpose under a given scenario. We posit
that the functional intent of behaviors can be inferred from their
triggering entry points based on the following insights, allowing us
to partition them into semantically coherent functional scenarios.
Insight 1: GUI-triggered behaviors reflect functional intent through
UI elements associated with entry points. In user-oriented scenarios,
behaviors are typically triggered by explicit user actions, such as
button clicks or text input. The semantics of these actions are often
revealed in surrounding GUI texts (e.g., dialog messages, button
captions). For example, an API call triggered by a button labeled
“Send Message” intuitively suggests message-related functionality.
Insight 2: Background-triggered behaviors should align with ex-
pected benign behaviors. In background-triggered scenarios, behav-
iors are implicitly invoked via system events (e.g., BOOT_COMPLETED,
SMS_RECEIVED) or lifecycle callbacks (e.g., onCreate(), onReceive()).
In such cases, the execution context is defined by the semantics of
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the corresponding Android system event or callback. This insight is
supported by prior work [3], which shows that malicious apps are
6.89 times more likely than benign ones to perform sensitive opera-
tions such as HTTP requests at the same background callback entry
point (e.g., Service.onCreate()). Such behavioral discrepancies
highlight the strong indicative power of entry-point semantics in
distinguishing malicious intent in system-invoked contexts.

Based on these insights, we organize functional scenario model-
ing into two parallel pipelines: (1) GUI-Associated Scenario Modeling
and (2) Background Callback-Associated Scenario Modeling. Both
pipelines adopt a shared three-step methodology: semantic signal
extraction, scenario label generation, and scenario label assignment.
To ensure the security relevance of modeled scenarios, we focus
on entry points from which sensitive APIs are reachable within
the call graph, as these points directly determine the functional
contexts under which privacy-critical behaviors may be executed.

3.2.1 GUI-Associated Scenario Modeling. Step 1: Semantic
Signal Extraction fromGUI Entry Points. To extract meaningful
semantic cues from GUI entry points, we leverage Backstage [23]
for precise callback resolution and layout parsing, which allows
us to map UI elements to their triggering methods and retrieve
surrounding textual content (e.g., “update applied successfully” in
Figure 1). In addition, we integrate OCR-based icon text extraction
using Tesseract [37] to capture embedded labels in visual assets. So
we use Backstage and Tesseract to extract three types of information
for each UI element :
• UI Callback: The callback method that responds to the UI
event (e.g., onClick() handler).

• Text Label: The textual content of the UI element, including
both standard widget text and icon-derived text (e.g., “OK” ).

• Context Label:Nearby textual contents parsed from the layout,
specifically the elements that share a common container (e.g.,
“update applied successfully”).

We treat this callback method as the GUI entry point, while the text
and context labels serve as its semantic signals.
Step 2: Scenario Label Generation from GUI Entry Points.
After extracting semantic signals from GUI entry points, our goal
is to cluster semantically similar entry points into coherent groups
that represent distinct functional scenarios (e.g., login, register,
share). These scenario labels serve as semantic anchors for group-
ing behaviors in downstream analysis. To achieve this, we follow
a three-phase process: (1) textual preprocessing to preserve key
semantics, (2) UI semantic embedding using BERT [14], and (3)
unsupervised clustering with HDBSCAN [26].

(1) Textual Preprocessing.We perform lightweight NLP pre-
processing on both text labels and context labels, focusing on pre-
serving crucial semantic cues. This includes lemmatization and
the removal of non-informative tokens such as punctuation and
numeric values. Unlike general NLP tasks, we deliberately preserve
prepositions and auxiliary verbs because they carry crucial func-
tional meanings in GUI contexts (e.g., “log in” ≠ “log out”).

(2) UI Semantic Embedding. For each GUI entry point 𝑒 , we
concatenate its text label and context label, and generate a semantic
embedding using BERT:

𝑣𝑒 = BERT(text label ∥ context label) (1)

Here, ∥ denotes the concatenation of the two input strings before
embedding. This encoding captures both local text semantics and
broader context, making it suitable for short but semantically rich
GUI texts. For entry points lacking GUI text are skipped in this
process and are handled in the Background Callback-Associated
Scenario Modeling pipeline (see Section 3.2.2).

(3) Unsupervised Clustering. We apply HDBSCAN, a density-
based clustering algorithm, to group the semantic embeddings of
GUI entry points into semantically coherent clusters. HDBSCAN
automatically infers the number of clusters and is robust to noise,
suiting the noisy and inconsistent naming patterns in real-world
apps. Each resulting cluster represents a distinct functional scenario.
For each cluster 𝑐𝑖 , we compute its centroid vector 𝑣𝑐𝑖 , and select the
UI element closest to the centroid to serve as the human-readable
scenario label 𝑙𝑐𝑖 . By applying these processes to a large corpus of
benign apps collected in Section 3.1, we construct approximately
800 functional scenario clusters and corresponding scenario labels,
covering common user intents such as login, register, pay, navigate,
and share. These scenario clusters form the conceptual founda-
tion for downstream behavior grouping and scenario consistency
analysis. Representative examples and lexical distributions of these
clusters are provided in Appendix A.
Step 3: Scenario Label Assignment from GUI Entry Points.
After constructing the reference scenario clusters from the collected
benign APKs, we assign scenario labels to GUI entry points in
unknown apps through two key steps: (1) semantic embedding of
each new entry point, and (2) label assignment by comparing the
embedding with pre-clustered scenario centroids.

(1) Semantic Embedding. Given an entry point 𝑒 (associated
with a UI callback method), we extract its corresponding text la-
bel and context label (if any) as Step 1, and compute its semantic
embedding 𝑣𝑒 using the same BERT encoder as in Step 2.

(2) Label Assignment. Let 𝑣𝑐𝑖 denote the centroid vector of
scenario cluster 𝑐𝑖 , and its corresponding label be 𝑙𝑖 . We compute
the cosine similarity between 𝑣𝑒 and each 𝑣𝑐𝑖 :

sim(𝑒, 𝑐𝑖 ) =
𝑣𝑒 · 𝑣𝑐𝑖

∥𝑣𝑒 ∥∥𝑣𝑐𝑖 ∥
(2)

We then assign the entry point 𝑒 to the label 𝑙∗ corresponding to
the most similar cluster 𝑐∗ :

𝑐∗ = arg max
𝑐𝑖 ∈C

sim(𝑒, 𝑐𝑖 )

𝑙∗ = 𝑙𝑐∗
(3)

This step ensures consistent scenario-aware behavior grouping
across unlabeled apps, essential for downstream anomaly detection.

3.2.2 Background Callback-Associated Scenario Modeling.
Step 1: Semantic Signal Extraction fromBackgroundCallback
Entry Points. Background behaviors are implicitly triggered by
system events or lifecycle transitions. Unlike GUI-driven scenarios
that expose rich semantic cues through visible UI elements, these en-
try points lack direct textual context, but their functional semantics
are often revealed in the associated callback methods and intent ac-
tions. Specifically, for each entry point 𝑒𝑏 identified as a background-
triggered callback, such as onCreate(), onStartCommand(), and
onReceive(), we extract the following semantic signals:
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• Callback Signature:Weuse themethod name (e.g., onReceive())
alongwith the enclosing component class (e.g., MessageReceiver)
to form a complete signature (e.g., MessageReceiver.onReceive()).
This signature reflects the lifecycle or system event context
where the behavior executes, indicating its functional intent.

• Intent Action (if any): For components such as Service or
BroadcastReceiver, the behavior is often triggered by An-
droid system actions (e.g., SMS_RECEIVED, BOOT_COMPLETED).
We extract these intent actions from both statically declared
intent-filters in the AndroidManifest.xml and dynamically
registered receivers via registerReceiver() calls. Intent ac-
tions provide explicit semantic labels that describe the external
event responsible for triggering the entry point.

The two categories of semantic signals together capture the con-
text of background behaviors, including the lifecycle position and
external events, enabling effective scenario modeling even in the
absence of GUI-level semantics.
Step 2: Scenario Label Generation from Background Callback
Entry Points. Similar to the GUI-associated scenario modeling
pipeline, this process involves the following three phases:

(1) Text Preprocessing. Unlike GUI texts, background callback
strings (e.g., MessageReceiver.onReceive(), SMS_RECEIVED) of-
ten lack clear word boundaries and exhibit higher lexical redun-
dancy. To enhance semantic granularity and enable meaningful
clustering, we apply two additional preprocessing steps beyond
those used in GUI modeling: (1) Camel-Case Splitting: Compound
identifiers such as onBatteryLow are split into individual tokens
(“on Battery Low”) to improve token representation. (2) Preserving
Domain-Specific Tokens: We retain Android-specific terms such as
“intent”, “receiver”, and common intent actions to preserve key se-
mantic cues otherwise discarded by general-purpose preprocessing.

(2) Background Semantic Embedding. After preprocessing,
we convert each background callback entry point’s semantic sig-
nals (i.e., the concatenation of callback signature and intent action)
into a semantic vector. Compared to GUI texts which are typically
short and user-oriented, background semantic signals often contain
templated, repetitive, and technical phrases. To ensure scalabil-
ity across large datasets and minimize computational overhead,
we adopt Word2Vec [27] instead of BERT here. Formally, let a
preprocessed semantic signal be represented as a token sequence
𝑒𝑏 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}. Its embedding vector is computed as the aver-
age of the corresponding token embeddings:

𝑣𝑒𝑏 =
1
𝑛

𝑛∑︁
𝑖=1

Word2Vec(𝑡𝑖 ) (4)

(3) Unsupervised Clustering. To improve clustering effective-
ness and suppress noise, we apply Principal Component Analysis
(PCA) [22] for dimensionality reduction. We retain the top 100
principal components, which preserve over 90% of the variance
in the original embedding space. We then apply HDBSCAN over
the reduced embeddings to form clusters of semantically related
background callbacks. This step is consistent with the GUI scenario
modeling described in Section 3.2.1. However, due to the higher
volume of background triggers across apps, the resulting number of
clusters is substantially larger. In our implementation, this process
typically yields around 2,000 distinct scenario labels.

Step 3: Scenario Label Assignment from Background Call-
back Entry Points. We follow the same labeling pipeline used in
GUI-based scenario modeling (Section 3.2.1). Given a new back-
ground entry point 𝑒𝑏 of unknown APKs, we construct its semantic
representation using the same preprocessing and embedding ap-
proach described in Step 2. We then assign 𝑒𝑏 to the scenario label
whose cluster centroid is most similar, using cosine similarity as
defined in Equation (2), and select the top score as in Equation (3).

3.3 Sensitive Behavior Representation
After partitioning entry points into distinct functional scenarios,
the next step is to abstract the sensitive behaviors exhibited under
each scenario. Accurate behavior representation is essential for fine-
grained anomaly detection. However, modeling sensitive behaviors
in Android presents several technical challenges. Permission-based
analysis, although widely adopted, only reflects the capabilities
granted to an app without indicating how or when those permis-
sions are actually used. As benign apps often over-request permis-
sions, this coarse-grained approach tends to result in high false
positives and limited behavioral fidelity. Alternatively, identifying
sensitive API calls offers finer granularity but still lacks contextual
understanding-treating API calls in isolation ignores the sequential
and semantic dependencies among them. In practice, real-world
behaviors are typically composed of multi-step workflows. For in-
stance, a data exfiltration behavior may involve accessing local files,
encrypting the data, and then transmitting it over the network.
Although representation of behavior through complete API call
chains allows for the capture of execution context, it often leads to
overfitting to specific patterns and fails to generalize across apps
that follow semantically similar but syntactically divergent paths.

To address these limitations, we introduce a two-stage sensitive
behavior modeling approach: (1) Sensitive API Call Chain Extraction:
We recover complete control-flow paths, referred to as sensitive
API call chains, from scenario-labeled entry points to sensitive
API invocations, leveraging enhanced static analysis. (2) Behavior
Representation Generation: Each extracted call chain is abstracted
into a semantically rich natural language summary using an LLM,
and subsequently embedded into a semantic vector space to support
further analysis. This two-stage design preserves the execution
context of sensitive behaviors while abstracting away low-level
implementation details, thereby improving generalization across
semantically similar but syntactically diverse behaviors.

3.3.1 SensitiveAPICall Chain Extraction. Android’s component-
based and event-driven architecture enables rich inter-component
communication (ICC) through the Intent mechanism [5]. How-
ever, this flexibility also introduces challenges for static analysis.
Sensitive behaviors often span multiple components and asynchro-
nous callbacks, making it difficult to recover complete execution
paths using existing static analysis tools such as FlowDroid. In
particular: (1) Inter-Component Discontinuities: Traditional static
analyzers struggle to track cross-component calls introduced by
startActivity(), startService(), or sendBroadcast(), lead-
ing to disconnected call chains. (2) Asynchronous Gaps: APIs such
as Thread, Handler, or AsyncTask introduce implicit edges be-
tween scheduling and execution points, which are typically missed
by default call graph construction.
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To address these challenges, we propose a three-stage refine-
ment of the call graph: (1) Initial Call Graph Generation: We first
use FlowDroid to generate the initial call graph of the Android
app and identify all reachable component entry points. (2) Asyn-
chronous Edge Completion: Following the prior work [45], we main-
tain a mapping of commonly used asynchronous call pairs (e.g.,
Thread.start()→ Runnable.run(), AsyncTask.execute()→
doInBackground()). To resolve these implicit edges, we apply def-
use chain and pointer analysis [8] to infer the actual target methods
of asynchronous invocations. We then add these links explicitly to
the call graph, recovering hidden flows across threads and tasks. (3)
ICC Path Repair via ICCBot: To bridge inter-component gaps, we
integrate ICCBot [43], which tracks the flow of Intent objects via
data-flow analysis and extracts both source and target component
summaries, enabling recursive resolution of ICC paths, covering
activity transitions, service invocations, and broadcast handling.

Through these refinements, we construct a comprehensive call
graph that enables precise extraction of call chains from scenario
entry points to sensitive APIs, forming the structural backbone for
subsequent behavior representation and anomaly detection.

3.3.2 Behavior Representation Generation. Given that raw
sensitive API call chains are often lengthy, obfuscated, and difficult
to interpret, we use LLMs to convert raw sensitive API call chains
into brief yet clear summaries, which perform better in improving
the semantic expressiveness and interpretability. To further assess
the necessity of this process, we provide a detailed visualization-
based evaluation in Appendix B, which compares raw sensitive
API call chains and their corresponding summaries in terms of
embedding cohesion and inter-category separation.
LLM-Based Behavior Summarization. Since LLM outputs are
highly influenced by prompt phrasing, we carefully design our
prompts based on three key principles: terminology consistency,
concise abstraction, and functional generalization. These principles
guide the LLM in transforming low-level sensitive API call chains
into high-level behavior summaries that are robust against code
obfuscation and structural variability. The prompt template used
in our system is detailed in Appendix C, including the instructions,
guidelines, and output requirements.
Behavior Embedding. To support effective semantic comparison
and anomaly detection, we encode each LLM-generated behav-
ior summary into a fixed-dimensional vector space. We employ
the all-MiniLM-L6-v2 model from the SentenceTransformers li-
brary [33], which provides efficient and semantically meaningful
sentence-level embeddings. Formally, given a behavior summary 𝑏,
we compute its embedding vector 𝑣𝑏 as:

𝑣𝑏 = SentenceTransformer(𝑏) (5)

These behavior embeddings will be used in later stages for semantic
similarity computation across behaviors, enabling unsupervised
anomaly detection based on deviations from known benign behav-
ior distributions.

Figure 3 illustrates how a raw sensitive API call chain is ab-
stracted into a semantically meaningful behavior representation
through LLM-based summarization and embedding. The example
shows a call chain extracted from an obfuscated advertisement
SDK, where method names (e.g., a(), b()) provide little semantic

Sensitive API Call Chain Extraction
com.adnet.core.LauncherActivity: void onCreate(android.os.Bundle)

com.adnet.reward.AdController: void initialize(android.content.Context)

com.adnet.reward.x1: void a()

com.adnet.reward.u9: void m(android.content.Context) 

com.obf.zn: void r(android.content.Context)

com.obf.zn: java.lang.String b()

com.adnet.reward.u9: void loadAd(android.content.Context)

com.adnet.view.internal.q5: void a() 

com.adnet.view.internal.r7: void render()

android.webkit.WebView: void loadUrl(java.lang.String)

LLM-Based Behavior Summarization
The app initializes the ad SDK and renders an advertisement via WebView.

Behavior Eembedding
[-0.10100495, 0.032379538, -0.09106025, -0.08297923, 0.08546471,       
-0.044969235, 0.04954732, 0.024439186, …]

using call graph

using LLM

using all-MiniLM-L6-v2

Behavior Representation Generation

Figure 3: Raw Sensitive API Call Chain to Behavior Embed-
ding via LLM-based Summarization and Embedding.

information. The LLM-generated summary accurately captures the
high-level intent (i.e., “initializes the ad SDK and renders an ad-
vertisement via WebView”). This summary is then encoded into
a fixed-dimensional semantic vector using all-MiniLM-L6-v2, en-
abling semantic comparison for anomaly detection.

3.4 Fine-Grained Anomaly Detection and
Explanation

With functional scenario modeling and behavior embeddings in
place, we now focus on detecting abnormal behaviors with fine
granularity and semantic interpretability. To this end, this section
introduces three core modules: (1) Reference Library Construction,
which builds a scenario-behavior aligned reference library as
the semantic foundation for anomaly detection; (2) Scenario-Aware
Anomaly Detection, which identifies malicious behaviors by quanti-
fying semantic deviations from scenario-specific benign behavior
distributions derived from the reference library; and (3) LLM-Based
Malware Report Generation, which enhances interpretability by pro-
ducing structured, human-readable reports for the most anomalous
behaviors detected.

3.4.1 Reference Library Construction. To support scenario-
aware anomaly detection, we construct a scenario-behavior aligned
reference library that serves as a semantic baseline. Specifically,
it groups behavior embeddings of benign apps based on the func-
tional scenario labels derived from their entry points, capturing
scenario-specific distributions of legitimate behaviors. Concretely,
for each cluster 𝑐 and its scenario label 𝑙𝑐 obtained from Section 3.2,
we further generate their behavior embeddings from previously
collected benign apps using the approach introduced in Section 3.3.
These embeddings are then grouped by scenario label 𝑙𝑐 to form a
reference distribution B𝑙𝑐 :

B𝑙𝑐 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
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where each 𝑣𝑖 denotes the embedding of a benign behavior belong-
ing to scenario label 𝑙𝑐 . Intuitively,B𝑙𝑐 characterizes the distribution
of expected (“normal”) behaviors within the scenario label 𝑙𝑐 . It
captures intra-scenario semantic regularities, such as submitting
credentials after login or accessing location during map use, pro-
viding a reliable baseline for detecting anomalous behaviors.

3.4.2 Scenario-Aware Anomaly Detection. Once the reference
library is established, we evaluate an unknown app by comparing
its behavior embeddings, partitioned by scenario labels, against the
corresponding benign behavior distributions in the reference library.
This enables the detection of fine-grained semantic inconsistencies
that may be overlooked by global detection schemes.
Scenario-Level Scoring. To balance robustness and semantic sen-
sitivity, we adopt a top-𝑘 similarity averaging strategy. Given a
new behavior embedding 𝑣∗ associated with scenario label 𝑙∗𝑐 , we
compute its anomaly score based on its average cosine similarity
to the 𝑘 nearest benign embeddings in the corresponding reference
distribution B𝑙∗𝑐 . Formally:

AnomalyScore(𝑣∗, 𝑙∗𝑐 ) = 1 − 1
𝑘

𝑘∑︁
𝑖=1

cos
(
𝑣∗,NN𝑖 (B𝑙∗𝑐 , 𝑣

∗)
)

(6)

where NN𝑖 (B𝑙∗𝑐 , 𝑣
∗) denotes the 𝑖-th nearest neighbor of 𝑣∗ in B𝑙∗𝑐 ,

measured by cosine similarity. A higher score indicates a greater
semantic deviation from benign behaviors within the functional
scenario. We empirically set 𝑘 = 50 based on a grid search in
the range 𝑘 = 10 ∼ 100, where it yielded the best balance between
robustness and sensitivity. This strategymitigates the risk of relying
on a single noisy reference point while preserving discriminative
power.
Global Anomaly Aggregation. To assess app-level anomalies,
we aggregate all scenario-level anomaly scores into a vector a =

[𝑎1, 𝑎2, . . . , 𝑎𝑘 ], where each 𝑎𝑖 denotes the anomaly score of a be-
havior under a specific scenario. This vector is then fed into a
one-class SVM [35] trained solely on benign apps. This enables
zero-day detection by identifying outliers in the high-dimensional
anomaly space, without requiring labeled malware during training.

3.4.3 LLM-Based Malware Report Generation. To enhance
the interpretability of detection results, we introduce a malware
explanation module powered by LLMs. Rather than merely identify-
ing anomalous behaviors, this module refines candidates that truly
suggest malicious intent and generates human-readable reports
explaining why an app is flagged as malware, effectively addressing
the explainability gap in traditional detection systems. We adopt
DeepSeek as the underlying LLM due to its open-source availability,
low deployment cost, and strong multi-step reasoning capabilities.
Candidate Filtering and Prompt Construction. To ensure re-
port quality and relevance, we first filter behavior candidates based
on their anomaly scores. Only behaviors with scores exceeding a
configurable threshold (empirically set to 0.5, which offered the best
trade-off in explanation filtering, with stable performance in the
0.4–0.6 range) are selected for explanation. For each behavior candi-
date, we provide DeepSeek with the following contextual elements:
its complete resolved call chain from the scenario-labeled entry
point to the sensitive API, and the associated functional scenario
semantic signals obtained in Section 3.2, indicating the triggering

context (e.g., SMS reception). These inputs are provided into a task-
specific prompt that instructs the LLM to determine whether the
behavior exhibits malicious intent, and to produce a three-part ex-
planation in a standardized, analyst-friendly format: (1) Anomaly
Summary: a concise description of the app’s malicious functionality
and the rationale for its potential threats; (2) Risk Breakdown: a de-
tailed analysis of behavioral risks, such as privacy violations, data
exfiltration, or permission abuse; and (3) Mitigation Suggestions:
recommended follow-up actions, such as permission audits, traffic
monitoring, or runtime tracing. The prompt is designed to simulate
the workflow of human security analysts, encouraging the LLM to
synthesize code and semantic cues into interpretable findings.
Interpretability via LLM Reasoning. A detailed report provided
in the supplementary material [19] shows an example generated
by DeepSeek for an app previously classified as malicious. Despite
code obfuscation and ambiguous method names, this model cor-
rectly identifies high-risk behaviors, such as SMS-based command
dispatch, sensitive data harvesting, and Tor-based exfiltration. No-
tably, DeepSeek’s reasoning mimics the logic of human analysts:
it associates the triggering context (e.g., SMS_RECEIVED) with
behavioral intent, and maps sensitive API combinations to known
threat behaviors (e.g., spyware, banking trojans). DeepSeek can also
infer obfuscation techniques, detect control flow strategies, and rec-
ognize privilege misuse-all without handcrafted rules. Overall, this
LLM-based explanation module significantly improves semantic
interpretability, reduces manual effort, and bridges the gap between
automated detection and human-understandable malware analysis.

We implemented ForeDroid using Java and Python. Specifi-
cally, we employed FlowDroid [8] and ICCBot [43] for static anal-
ysis tasks such as call graph extraction, entry point identifica-
tion, and call chain resolution. For functional scenario clustering
and anomaly detection, we utilized the Scikit-learn library [31] in
Python. To generate natural language descriptions of behaviors
based on the call chain, we deployed the llama3-70b-8192 model
locally via Ollama and used the all-MiniLM-L6-v2 model from
sentence-transformers for behavior embedding. For LLM-based
anomaly explanation, we integrated the deepseek-r1:14b model,
also deployed locally through Ollama.

ForeDroid supports end-to-end analysis in a few minutes per
APK, including under 2 minutes for static analysis, under 10 sec-
onds for anomaly detection, and around 1.3 minutes for LLM-based
explanation—reducible to seconds when accessed via API.

4 Experiment
To evaluate the effectiveness of ForeDroid, we propose the follow-
ing three research questions:

• RQ1: Zero-Day Malware Detection. Can ForeDroid effec-
tively detect previously unseen (zero-day) malware samples
under temporal and family-based evaluation settings?

• RQ2: Fine-GrainedBehaviorAnalysis.Howwell does ForeDroid
identify and explain malicious behaviors at a fine-grained level
compared to existing baselines?

• RQ3: Component Effectiveness. To what extent does each
core component (i.e., scenario-aware clustering, call chain com-
pletion, and LLM-based behavior summarization) contribute to
the overall detection performance of ForeDroid?
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Figure 4: Performance trend of different methods over time across four metrics.

Table 1: Summary of datasets used in our experiments.

Class Tag Date Range Apps (#)

Malicious
Drebin — 5,560

GPMalware 2016–2021 105
AndrozooMal 2014–2022 18,000

Benign AndrozooBen 2014–2022 18,000

Total — — 41,665

Dataset.Our dataset was built from three commonly used academic
sources: Drebin [7], GPMalware [10], and AndroZoo [4] , and is
organized into four dataset subsets as follows:
• Drebin: A widely used malicious dataset consisting of 5,560
malware samples with family annotations.

• GPMalware: A malicious dataset of 105 malware samples dis-
covered on Google Play between Jan. 2016 and Jul. 2021, each
accompanied by detailed manual reports.

• AndroZooMal: A malicious dataset of 18,000 malware samples
collected from AndroZoo between 2014 and 2022, where each
sample is flagged as malicious by at least 15 antivirus engines
on VirusTotal [1].

• AndroZooBen: A benign dataset of 2,000 benign samples from
the same 2014–2022 period in AndroZoo, where each sample
is confirmed benign by all antivirus engines on VirusTotal.
These are distinct from the 28,994 representative benign apps
discussed in Section 3.1.

As summarized in Table 1, our final dataset contains 41,665
Android apps, with 23,665 malicious and 18,000 benign samples,
spanning a period of 9 years.

4.1 Zero-Day Malware Detection
4.1.1 Setup. Zero-day malware refers to previously unknown
malicious apps that have not yet been identified by anti-virus soft-
ware [20]. To simulate realistic zero-day detection challenges, we
adopt two evaluation settings:

(1) Scenario A: Temporal Split. This setting evaluates the
model’s ability to generalize across time, i.e., training on older sam-
ples and testing on newer ones. We split the dataset based on app
timestamps, ensuring the testing set only contains apps collected

after the training period. Specifically, we use the AndrozooMal
and AndrozooBen datasets, covering the years 2014 to 2022 (2,000
apps per year). For baseline methods that require training samples,
we use apps from 2014-2017 for 10-fold cross-validation and test
on apps from 2018-2022. To ensure temporal fairness, we also re-
evaluated ForeDroid by constructing its reference library solely
from benign apps collected during 2014–2017, and then testing
on the 2018–2022 set. Under this setting, we compare ForeDroid
with four baselines. MaMaDroid [25]: a static Android malware
detection system that models API call sequences as Markov chains.
MalScan [40]: a detection framework leveraging sensitive API cor-
relation graphs to identify malicious logic. DeepRefiner [42]: a
semantic-based deep learning model leveraging LSTM and MLP for
Android bytecode and XML semantics. Chen et al. [13] (CL-based):
a continuous learning-based detection framework that adapts its
model via incremental learning to cope with distribution drift.

(2) Scenario B: Family-Based Split. This setting assesses the
model’s ability to detect previously unseen malware families, i.e.,
training on known malware families and testing on previously
unseen ones. We first annotate the family labels of the Andro-
zooMal dataset using AVCLASS++, an enhanced malware labeling
framework built upon the state-of-the-art AVCLASS [36]. For base-
line methods requiring labeled training data, we use the Drebin
dataset as the training set. We then randomly select 2,000 samples
from AndrozooMal whose family labels do not appear in Drebin
(e.g., Smsreg, Skymobi) to form the zero-day test set. This setting
is designed to assess the model’s generalization ability in iden-
tifying malware that emerged with previously unseen behavior
patterns. For this scenario, we compare with three baselines: Ma-
MaDroid [25], MalScan [40], and DeepRefiner [42]. Chen et al. [13]
is not included here, as it requires a continuous temporal data
stream for incremental updates, which is not compatible with the
family-based split setting.

To measure detection effectiveness, we adopt four standard met-
rics: Accuracy, Precision, Recall, and F1-Score, defined as follows:
Accuracy = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 , Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , Recall =

𝑇𝑃
𝑇𝑃+𝐹𝑁 ,

and F1-Score = 2·Precision·Recall
Precision+Recall , where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 refer

to the numbers of correctly detected malware, correctly detected
benign apps, benign apps misclassified as malware, and malware
missed as benign, respectively. To further assess the robustness of
malware detectors over time, we introduce the Area Under Time
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Table 2: F1-Score (%) comparison for zero-day malware detec-
tion in Scenario A (Temporal Split).

Method Cross
Validation 2018 2019 2020 2021 2022 Average

MaMaDroid 93.2 65.4 43.9 52.4 42.2 22.6 45.3
MalScan 94.3 69.0 59.7 27.7 23.6 19.3 39.9
DeepRefiner 94.7 82.7 43.3 42.2 38.9 15.3 44.5
CL-based 99.7 88.5 83.4 74.9 63.1 57.6 73.5
ForeDroid – 90.0 89.9 88.5 86.6 88.2 88.6

Table 3: Performance comparison in terms of AUT.

Method AUT(Acc.) AUT(Pre.) AUT(Recall) AUT(F1)

MaMaDroid 0.6320 0.5734 0.3851 0.4563
MalScan 0.5608 0.7615 0.2765 0.3879
DeepRefiner 0.6117 0.8559 0.3115 0.4335
CL-based 0.7435 0.7368 0.7362 0.7361
ForeDroid 0.8976 0.8819 0.8895 0.8853

(AUT) metric, which aggregates yearly scores into a single value to
reflect stability and long-term reliability. Given 𝑇 time points (i.e.,
5 years from 2018 to 2022), and metric values {𝑠1, 𝑠2, ..., 𝑠𝑇 }, AUT
is calculated as:

AUT =
1

𝑇 − 1

𝑇−1∑︁
𝑖=1

𝑠𝑖 + 𝑠𝑖+1
2

(7)

A higher AUT indicates better temporal stability; lower values
suggest rapid degradation over time and limited generalization.

4.1.2 Results. We evaluated the performance of zero-day mal-
ware detection under both scenarios:

(1) Scenario A (Temporal Split): Table 2 shows the year-wise
F1-scores of ForeDroid and four baselines (MaMaDroid, MalScan,
DeepRefiner, and CL-based under the temporal-split setting. Ma-
MaDroid and MalScan show substantial performance degradation
over time, with F1-scores dropping from 65.4% to 22.6% and from
69.0% to 19.3%, respectively, resulting in average F1-scores of only
45.3% and 39.9%. DeepRefiner, a deep learning approach, declines
sharply from 82.7% to 15.3%, while CL-based approach achieves
higher performance but still drops from 88.5% to 57.6% and re-
quires continuous labeling and retraining. In contrast, our method
maintains consistently high performance, with F1-Scores exceed-
ing 86% each year and an average of 88.6%. Notably, our approach
is unsupervised and does not require retraining, yet still outper-
forms supervised baselines. This stable performance across five
consecutive years demonstrates ForeDroid’s strong resilience to
evolving malware behaviors. While ForeDroid does not rely on
labeled malware or retraining, its performance may be influenced
by the coverage and diversity of the reference library. In particular,
rare or unconventional behaviors that are not well represented in
the reference library may lead to less confident anomaly assess-
ments. However, our results show that, when built upon a carefully
curated and representative benign corpus, ForeDroid can general-
ize effectively, demonstrating strong practicality and robustness in
temporal-split zero-day detection settings.

Table 4: Zero-day detection performance in Scenario B
(Family-Based Split).

Method Accuracy Precision Recall F1-Score

MaMaDroid 0.276 0.393 0.133 0.198
MalScan 0.219 0.367 0.217 0.273
DeepRefiner 0.579 0.795 0.214 0.337
ForeDroid 0.885 0.834 0.960 0.893

Table 3 presents the AUT comparison across four evaluation
metrics-Accuracy (A), Precision (P), Recall (R), and F1-Score (F1).
ForeDroid achieves the highest AUT in all metrics, with anAUT(F1)
of 0.8853, outperforming MaMaDroid (0.4563), MalScan (0.3879),
DeepRefiner (0.4335), and CL-based (0.7361). These results indicate
that our method not only performs well in individual years but also
maintains long-term reliability, making it particularly suitable for
real-world deployment where malware threats continuously evolve.
Figure 4 further illustrates the performance trends of the four met-
rics over the five-year testing period. All baseline methods suffer
noticeable performance degradation across metrics, particularly in
Recall, where F1-scores fall below 0.5 within two years. The only
exception is CL-based, whose decline is less severe but still evi-
dent, and whose approach requires periodic re-training. In contrast,
ForeDroid maintains consistently high performance throughout,
demonstrating temporal stability and resilience.

(2) Scenario B (Family-Based Split): Table 4 reports the zero-
day detection performance under the family-based split setting. In
this scenario, both MaMaDroid and MalScan exhibit poor gener-
alization to unseen malware families, with F1-scores below 0.30.
Their extremely low recall rates (0.133 and 0.217, respectively) indi-
cate a severe inability to identify novel threats that deviate from
previously learned family-specific behavior patterns. DeepRefiner
achieves higher Precision (0.795) but continues to exhibit low Recall
(0.214), resulting in an F1-score of only 0.337. In contrast, ForeDroid
significantly outperforms both baselines, achieving an F1-score of
0.893 and a recall of 0.960. These results demonstrate the strong
generalization capability of our unsupervised, scenario-aware de-
tection framework, which operates independently of family-specific
training data. By modeling behaviors within functional scenarios,
ForeDroid effectively captures the semantic intent behind mali-
cious actions rather than relying on fixed feature patterns, enabling
it to robustly detect unfamiliar threats. This confirms the practical
value of ForeDroid in real-world deployment environments, where
emerging malware families must be accurately identified without
prior knowledge or retraining.

4.2 Fine-grained Behavior Analysis
4.2.1 Setup. To assess the fine-grained behavior detection capa-
bility of ForeDroid, we conduct a comparative evaluation against
the baseline, ProMal [39], on the GPMalware dataset. ProMal is the
state-of-the-art system designed for precise and interpretable mali-
cious behavior analysis at a fine-grained level. While the original
GPMalware taxonomy categorizes behaviors into eight high-level
payload types-Information stealing, Ad abuse, Premium charges,
Cryptomining, Root exploit, Clipboard hijacking, Port forwarding,
and Ransom-we refine these categories into a set of 25 fine-grained
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Table 5: Fine-Grained Behavior Types Used in Evaluation.

Type ID Behavior Type Payload Category

T1 Device fingerprinting (e.g., IMEI, IMSI) Information stealing
T2 Location tracking Information stealing
T3 App list scanning Information stealing
T4 Contact/call record access Information stealing
T5 Clipboard access Clipboard hijacking
T6 Silent SMS sending Premium charges
T7 Premium-rate call dialing Premium charges
T8 Ad SDK loading via WebView Ad abuse
T9 WebView + JS injection Ad abuse / Info stealing
T10 Tor/VPN/socket-based comm Port forwarding
T11 Shell command execution Root exploit
T12 File encryption Ransom
T13 Audio/photo capture Spyware
T14 Suspicious background services Unknown
T15 Remote control (e.g., SMS commands) Premium / Spyware
T16 JS-based cryptomining Cryptomining
T17 Local CPU-based mining Cryptomining
T18 Mining backdoor command exec Cryptomining / Backdoor
T19 Dynamic payload loading/execution Backdoor
T20 SMS content leakage Information stealing
T21 CPA fraud (click/convert spoofing) Ad fraud
T22 Credential phishing Phishing / Scam
T23 App icon hiding Stealth
T24 Screen scraping / UI hijacking Spyware
T25 File enumeration / exfiltration Information stealing

Table 6: Comparison of Fine-Grained Behavior Detection on
the GPMalware Dataset.

Method #Detected #FP #FN Precision Recall F1-Score

ForeDroid 652 40 27 0.9386 0.9577 0.9480
ProMal 634 38 43 0.9401 0.9327 0.9364

behavior types to support more precise evaluation. Table 5 summa-
rizes the taxonomy, where each fine-grained behavior (e.g., Silent
SMS sending) is mapped to a corresponding high-level payload
category. Based on this refined taxonomy, we manually annotated
a total of 639 ground-truth behaviors across 102 malware samples
(out of 105 total samples; three failed due to call graph extraction
errors). We then compared the outputs of ForeDroid and ProMal
against these annotations on a per-sample, per-behavior-type basis.

4.2.2 Results. Table 6 compares ForeDroid and ProMal in terms
of behavior detection counts, error rates (false positives and false
negatives), and evaluation metrics (precision, recall, and F1-score)
against ground-truth annotations on the GPMalware dataset. Fore-
Droid outperforms ProMal in fine-grained malicious behavior de-
tection. It successfully identifies more ground-truth behaviors, with
a slightly higher number of false positives but significantly fewer
false negatives (27 vs. 43). This results in improved recall and a
higher F1-score of 0.9480, compared to 0.9364 for ProMal. These
results indicate that ForeDroid provides more comprehensive cov-
erage of semantically diverse malicious behaviors. To gain deeper
insights into ForeDroid’s performance, we conduct a detailed error
analysis focusing on both false negatives and false positives.

FP Analysis. Most false positives arise from semantically ambigu-
ous behaviors that lack sufficient contextual signals to reliably
distinguish between benign and malicious intent. These include
benign-like API patterns (e.g., WebView with JavaScript injection),
privacy-preserving networking (e.g., Tor/VPN usage), and adver-
tisement SDKs that resemble ad fraud but lack concrete attribution
evidence. Compared to ForeDroid, ProMal reports slightly fewer
false positives (38 vs. 40), achieving higher precision (0.9401 vs.
0.9386). This is largely attributed to ProMal’s design assumption
that the input samples are already confirmed malware. Under this
assumption, ProMal focuses solely on interpreting knownmalicious
behaviors, allowing it to filter out benign-looking behaviors more
conservatively. However, this also limits its generalization ability
and disqualifies it as a true detection system, since it cannot be
applied to unknown or unlabeled samples in practice. In contrast,
ForeDroid is designed for open-world detection scenarios, where
malicious intent is inferred from behavioral inconsistencies without
prior knowledge. As a result, it may be more aggressive in flagging
ambiguous patterns, such as WebView interactions or networking
modules, leading to a slight increase in false positives.
FN Analysis. We observe that most missed behaviors (false nega-
tives) fall into one of the following three categories: (1) behaviors
relying on non-sensitive and generic APIs (e.g., clipboard access),
which account for only 0.6% of all cases (4 out of 639) and are con-
servatively excluded from detection to avoid overgeneralization; (2)
runtime-dependent behaviors involving dynamic payloads or code
loading; and (3) web-driven threats such as phishing or injected
JavaScript, which are not statically recoverable.

A more detailed breakdown of all false positive and false negative
cases is provided in the supplementary material [19].

Beyond standard payload execution, ForeDroid also leverages
scenario-aware entry point modeling and complete call chain anal-
ysis to uncover deception and persistence mechanisms. For in-
stance, ForeDroid successfully identifies that AndroidOS.JSMiner
disguises itself as a religious tool app (Rosario Prayer) while con-
ducting background cryptomining; and FalseGuide blends ad fraud
and data exfiltration under the cover of a football gaming app.
ForeDroid also detects forensic evasion strategies and sandbox-
aware logic in multiple samples, e.g., Hiddad conditionally disables
payloads when executed in emulator environments; and Aladdin
leverages Runtime.availableProcessors() to detect single-core
CPUs as a proxy for sandbox environments. Furthermore, our
system highlights persistence risks embedded in malicious apps.
For example, AlarmReceiver registered for BOOT_COMPLETED en-
ables malware like Haken to self-start upon device reboot, while
OnRestartReceiver in Solid implements fallback mechanisms to
ensure the continuous presence of fraudulent components. These
advanced detection and reasoning capabilities demonstrate the ef-
fectiveness of ForeDroid in bridging low-level call chains analysis
with high-level semantic interpretation.

4.3 Ablation Study of Core Components
4.3.1 Setup. To investigate the contribution of each core com-
ponent in our system, we perform an ablation study using the
AndrozooMal and AndrozooBen datasets (spanning 2018-2022). We
evaluate all variants under the same anomaly detection pipeline,
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Table 7: Result of the Ablation Study.

Variant Acc. Precision Recall F1

Full System (Ours) 0.9000 0.8716 0.9183 0.8931

✗ LLM-Based Behavior Summarization 0.6017 0.5587 0.6287 0.5901
✗ Scenario-Aware Clustering 0.6644 0.5676 0.7119 0.6316
✗ Call Chain Completion 0.7701 0.7813 0.7500 0.7653

changing only the target component while keeping all other set-
tings fixed. The following three key components are considered:
(1) Scenario-Aware Clustering: We compare our scenario clustering
using semantic context extracted in Section 3.2 against a baseline
clustering approach using only callback method names. (2) Call
Chain Completion: We evaluate our asynchronous, ICC-aware call
chain completion mechanism by comparing it with the initial call
graph output generated by FlowDroid. (3) LLM-Based Behavior
Summarization: We compare raw call chain embeddings with LLM-
generated natural language summaries followed by embedding
using all-MiniLM-L6-v2.

4.3.2 Results. Table 7 reports the impact of each core component
on detection performance, measured by Accuracy (Acc.), Preci-
sion (Pre.), Recall, and F1-Score. Among the variants, we observe
that removing the LLM-Based Behavior Summarization leads to the
most severe performance drop, reducing the F1-score by over 30%
to 0.5901. Notably, both precision and recall decline sharply, con-
firming that raw call chain embeddings lack sufficient semantic
expressiveness. This highlights the central role of LLM-generated
summaries in extracting meaningful behavior semantics from noisy
or obfuscated call chains. We further analyze the impact of the other
components: (1) Scenario-Aware Clustering: Disabling semantic clus-
tering and using only callback method names degrades F1-score to
0.6316. This demonstrates that semantic context (e.g., component
names, intents, GUI labels) is essential for accurate behavior group-
ing and anomaly localization. (2) Call Chain Completion: Without
ICC-aware call chain expansion, the F1-score drops to 0.7653. While
the effect is less severe than that of the LLM module, this confirms
the importance of reconstructing complete control flow paths to
expose full behavior paths. Overall, these results demonstrate that
each component contributes meaningfully, but the LLM-based be-
havior summarization is most critical for achieving high precision
and recall in fine-grained malware detection.

5 Limitations and Discussion
While ForeDroid demonstrates strong performance in both zero-
day detection and fine-grained behavior analysis, several limitations
remain due to inherent challenges in static analysis and scenario-
level modeling. (1) Static Analysis Blind Spots: ForeDroid relies on
enhanced static call graphs to reconstruct behavior paths. How-
ever, behaviors involving runtime-loaded payloads, reflective class
loading, or dynamic UI overlays are inherently difficult to capture
through static analysis. As a result, threats such as phishing via
injected web content or payloads triggered through reflection may
be underdetected. That said, while the malicious logic embedded
within dynamically injected content may be invisible to static analy-
sis, ForeDroid is still capable of identifying the associated loading

behavior itself, such as remote code fetching or reflective class
loading. When such operations occur within suspicious functional
scenarios, they can still be flagged as anomalous. (2) Limited Context
Granularity: Although ForeDroid constructs functional scenarios
using GUI text, callback semantics, and complete call chains to
model execution context as comprehensively as possible, certain
behaviors still require finer-grained or runtime-specific information
to accurately infer malicious intent. For example, distinguishing
benign advertisement SDKs from ad fraud often involves exam-
ining actual ad content or click behavior, which may exceed the
scope of static analysis. Similarly, privacy-preserving apps and
malware may share common structural features (e.g., Tor/VPN
usage), where traffic-level semantics are necessary for reliable dis-
ambiguation. (3) Benign Behavior Coverage: ForeDroid assumes
that behaviors semantically similar to those in a benign corpus are
safe. However, due to the diversity of Android apps, this corpus
may not fully cover all benign usage patterns, potentially result-
ing in false positives for rare but non-malicious cases. To mitigate
this, we have constructed a large-scale benign behavior corpus
comprising 28,994 high-quality apps across 49 categories to maxi-
mize functional diversity and improve generalization. Additionally,
we support periodic updates to incorporate new benign patterns
and mitigate the effects of behavior drift over time. (4) Adversarial
Evasion and Obfuscation: While ForeDroid avoids hand-crafted
features and leverages non-obfuscated key system APIs to resist
traditional evasion (e.g., feature-space [11], obfuscation, graph per-
turbation), advanced techniques—such as dummy API injection
or benign-like behavior blending—may still affect semantic anal-
ysis. ForeDroid mitigates these via LLM-based abstraction and
per-scenario semantic validation. Nonetheless, we leave stronger
resistance to adaptive attacks and advanced obfuscation as future
work. (5) Side-Channel Threats: ForeDroid focuses on explicit sen-
sitive API misuse within identifiable functional scenarios. Implicit
threats such as side-channel leakage are beyond the scope of static
semantic modeling and remain important future work.

6 Related Work
6.1 Android Malware Detection
To keep pace with evolving Android malware, various detection
methods have been proposed, including static analysis [8], dynamic
analysis [16, 28, 30], and ML/DL-based approaches [2, 7, 42]. While
deep models achieve high accuracy (above 99% [24]), they face
two key limitations: (1) poor generalization to zero-day malware
due to distribution shifts, and (2) limited interpretability, offer-
ing only binary outputs without pinpointing which behaviors are
anomalous[7]. This black-box nature hinders trust and forensic util-
ity. In contrast, ForeDroid detects semantic inconsistencies within
functional scenarios in an unsupervised manner and generates fine-
grained reports to support behavior-level analysis and explanation.

6.2 Behavior Semantic Modeling in Android
Apps

Recent work has moved from syntactic pattern matching to seman-
tic modeling of Android app behaviors. Methods such as Droid-
SIFT [45], AppContext [44], and PikaDroid [3] enhance semantic
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understanding by modeling API dependencies, entry point asso-
ciations, and execution contexts. ProMal [39] further constructs a
behavior knowledge graph (BxKG) via manual malware labeling to
capture malicious behavior trajectories. However, most methods
rely on handcrafted rules or labeled data, limiting scalability to
unseen threats. In contrast, ForeDroid introduces an end-to-end
unsupervised framework that learns semantic behavior representa-
tions from entry-point contexts and call chains, enabling scalable
detection of anomalies without labeled malware. Another line of
work investigates UI-behavior inconsistencies. Backstage [23] stat-
ically clusters UI elements based on text and layout context to
identify mismatches between user expectations and the APIs trig-
gered. DeepIntent [41] models icon-text–behavior correlations to
detect UI-level intent violations in benign apps. While effective in
detecting UI anomalies, these methods are limited to GUI-triggered
behaviors and rely on surface-level signals (e.g., API or permission
usage), lacking semantic modeling of sensitive behaviors. They are
thus insufficient for malware detection or behavior explanation. In
contrast, ForeDroid aligns intent and behavior across both GUI and
background contexts, reconstructs sensitive behavior paths, and
employs LLMs for anomaly interpretation, enabling interpretable,
fine-grained malware detection beyond UI-level inconsistencies.

6.3 Explainability in Malware Behavior
Analysis

Explainability plays a crucial role in malware behavior analysis,
especially in approaches that go beyond binary classification to pro-
vide actionable insights. Numerous studies have pursued interpret
model decisions by highlighting influential features or providing
attribution scores, including Drebin [7], LIME [34], LEMNA [21],
and XMal [38]. While they extract which features contribute to
a malicious classification, these methods typically operate at the
feature level and cannot reconstruct full causal chains of malicious
behavior, making it difficult to recover the contextual logic of an
attack. Although ProMal supports behavior description to enhance
explainability from a behavioral perspective, it heavily relies on
domain-specific knowledge, which makes it costly to maintain
and difficult to scale. Conversely, our approach provides behavior-
specific insights using LLMs grounded in semantically rich and com-
prehensive call chains, and generates structured, human-readable
reports that detail the attack process with minimal manual effort.

7 Conclusion
In this paper, we propose a scenario-aware framework for Android
malware detection that enables unsupervised identification and
explanation of malicious behaviors. By modeling behavioral incon-
sistencies within scenarios and leveraging LLM-generated malware
reports, our method enhances generalization and interpretability.
ForeDroid shows superior performance in zero-day malware de-
tection as well as behavior analysis.
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A Representative GUI-Associated Functional
Scenario Labels
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Figure 5: Visualization of representative UI text expressions
across six typical functional scenarios using word clouds.

Figure 5 visualizes representative UI text expressions across six
typical functional scenarios using word clouds, highlighting the
semantic coherence and diversity of each cluster.

B Evaluating the Semantic Effectiveness of
LLM-Generated Behavior Summaries

To assess the semantic cohesion and expressiveness of LLM-generated
behavior summaries, we conduct a comparative visualization ex-
periment involving both raw sensitive call chains and their corre-
sponding LLM-based natural language summaries. We randomly
select three representative sensitive call chains from each of five
behavior categories-Location, SMS, Audio, File, and Network-based
on the types of sensitive permissions required. This yields a total of
15 samples. Each call chain is paired with its corresponding LLM-
generated summary, forming two parallel representations: the orig-
inal sensitive call chains and their semantic summaries. To measure
semantic similarity, we embed both raw call chains and summaries
into a shared vector space using model all-MiniLM-L6-v2 from
the SentenceTransformers library. Pairwise cosine similarities are
then computed and visualized as heatmaps.

B.1 Semantic Similarity Heatmap
Figure 6 compares the semantic similarity matrices of the two
representations. Panel (a) shows the similarity scores among raw
sensitive call chains, while panel (b) shows scores among their
corresponding LLM-generated summaries. Each row/column corre-
sponds to one behavior instance, grouped sequentially by behavior
type (i.e., rows 1–3: Location, 4–6: SMS, etc.). As the heatmaps re-
veal, the LLM-based representations exhibit significantly stronger
intra-group cohesion and reduced inter-group confusion. Darker
blocks along the diagonal in (b) indicate tighter clustering within
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(a) Semantic Similarity Heatmap of Raw Call Chains.
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(b) LLM-Generated Summary Similarity Heatmap.

Figure 6: Semantic similarity comparison across five func-
tional behavior groups (Location, SMS, Audio, File, Network).
(a) illustrates pairwise similarity based on raw call chains;
(b) shows similarity based on LLM-generated summaries.

Figure 7: Prompt design for LLM-based behavior summary
generation.

each behavior category, validating the ability of LLM-generated
summaries to enhance semantic alignment.

B.2 Key Observations
• Stronger Intra-Group Cohesion: LLM-based summaries
produce more consistent embeddings within the same be-
havior category.

• Improved Inter-GroupDiscrimination:Compared to raw
call chains, LLM summaries reduce semantic overlap be-
tween categories, facilitating more accurate grouping.

• Resilience to Obfuscation: By abstracting low-level imple-
mentation details, LLM summaries maintain interpretability
even in the presence of naming obfuscation.

These results underscore the value of using LLM-generated sum-
maries as semantically rich representations for behavior modeling,
and provide empirical support for their use in downstream tasks
such as anomaly detection and malware interpretation.

C Prompt Design for LLM-Based Behavior
Summary Generation

The prompt in Figure 7 guides themodel to abstract low-level details
and produce coherent summaries suitable for behavior embedding.
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